Navigating the Wrench-Feasible C-Space of Cable-Driven Hexapods

نویسندگان

  • Oriol Bohigas
  • Montserrat Manubens
چکیده

Motion paths of cable-driven hexapods must carefully be planned to ensure that the lengths and tensions of all cables remain within acceptable limits, for a given wrench applied to the platform. The cables cannot go slack –to keep the control of the platform– nor excessively tight –to prevent cable breakage– even in the presence of bounded perturbations of the wrench. This paper proposes a path planning method that accommodates such constraints simultaneously. Given two configurations of the platform, the method attempts to connect them through a path that, at any point, allows the cables to counteract any wrench lying inside a predefined uncertainty region. The resulting C-space is placed in correspondence with a smooth manifold, which allows defining a continuation strategy to search this space systematically from one configuration, until the second configuration is found, or path non-existence is proved by exhaustion of the search. The approach is illustrated on the NIST Robocrane hexapod, but it remains applicable to general cable-driven hexapods, either to navigate their full six-dimensional C-space, or any of its slices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Wrench Feasible Workspace Analysis of a Cable Suspended Robot for Heavy Loads Handling

Modeling and Wrench feasible workspace analysis of a spatial cable suspended robots is presented. A six-cable spatial cable robot is used the same as Stewart robots. Due to slow motion of the robot we suppose the motion as pseudostatic and kinetostatic modeling is performed. Various workspaces are defined and the results of simulation are presented on the basis of various workspaces and app...

متن کامل

Interval Analysis of Controllable Workspace for Cable Robots

Workspace analysis is one of the most important issues in the robotic parallel manipulator design. ‎However, ‎the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...

متن کامل

Dual Space Control of a Deployable Cable Driven Robot: Wave Based Approach

Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...

متن کامل

Wrench Reconfigurability via Attachment Point Design in Mobile Cable Robots

In our previous paper [1], we examined enhancing manipulation capabilities of cable robots by addition of base mobility to the spooling-winches. Base mobility facilitated the regulation of the tension-direction (via active repositioning of the mobile bases) and allowed for better conditioning of the wrench feasible workspace. In this paper, we explore design-modifications on the attachment to t...

متن کامل

Determination of the Wrench-closure Workspace of 6-dof Parallel Cable-driven Mechanisms

The wrench-closure workspace of parallel cable-driven mechanisms is the set of poses of their mobile platform for which the cables can balance any external wrench. The determination of this workspace is an important issue since the cables can only pull and not push on the mobile platform. This paper deals with the wrench-closure workspace of six-degrees-of-freedom (DOF) parallel mechanisms driv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012